<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-3 (Deductive Reasoning)</name>		
Inductive Reasoning	Reasoning from the specific to the general	
Deductive Reasoning	Reasoning from the general to the specific If given statement is true, D.R. produces a true conclusion	
Law of Detachment	If $p \rightarrow q$ is a true statement and p is true, then q is true. <notes as="" explain="" needed="" to=""></notes> Given a general conditional that's true and a specific situation if the hypoth applies to the situation then the concl holds true for the situation too	
Example	Pg 83, Check Understanding #2What can you conclude? <notes as="" explain="" needed="" to=""> Does general conditional hypoth directly apply to situation? Yescan use Law of Detachment Vladimir should not pitch a complete game on Tuesday</notes>	
Example	Pg 83, Check Understanding 3Use Law? Why/why not? <notes as="" explain="" needed="" to=""> Does general conditional hypoth directly apply to situation? Nosituation is related to <u>conclusion not hypothesis</u> Can not use Law of Detachment</notes>	

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-3 (Deductive Reasoning)

Law of Syllogism	If $p \rightarrow q$ and $q \rightarrow r$ are true statements, then $p \rightarrow r$ is true. Chain of conditionals, concl one is hypoth of next You can say final concl follows directly from initial hypoth
Example	Pg 84, Check Understanding #4Draw concl or tell why can't < notes as needed to explain >
	 a) If a number ends in 0, then it is divisible by 10. (p→q) If a number is divisible by 10, then it is divisible by 5. (q→r)
	Clear & consistent chain: $p \rightarrow q$ and $q \rightarrow r$ Both true Therefore we can conclude $p \rightarrow r$. If a number ends in 0, then it is divisible by 5.
	b) If a number ends in 6, then it is divisible by 2. $(p \rightarrow q)$ If a number ends in 4, then it is divisible by 2. $(r \rightarrow q)$
	This one is different: Concl of one is not the hypothesis of the next. Not possible to apply the Law of Syllogism.
Example	Pg 86, #22 <notes as="" explain="" needed="" to=""> <u>Statement 1</u>: All national parks are interesting. <u>Conditional</u>: If a park is a national park, it is interesting. <u>Statement 2</u>: Mammoth Cave is a national park. <u>Statement 2 related to hypoth, can use Law of Detach</u> <u>Mammoth Cave is interesting.</u></notes>